

The 17th ROK-USA Forum on Nanotechnology

Low Power 2D/oxide Memtransistor Device with Highly Reliable Heterosynaptic Plasticity

Department of Advanced Material Engineering Chungbuk National University

bjcho@chungbuk.ac.kr

Apr. 4. 2023

Prof. Byungjin Cho

Scaling immunity of 2D transistors

- Scaling length (λ) approaching 1 nm, enabling ultra-short channel transistor
- Dangling bonding free surface and uniform thickness
- Quantum confinement from a limited 'vertical' dimension making electrons less prone to scattering
- Rich band structure of the 2D materials

Artificial synapses based on 2D materials

Jin-Hong Park et al., ACS Appl. Electron. Mater. 2, 371 (2020)

Promising candidates for artificial synapse

Material candidates

Research motivation: novel 2D memtransistor architecture

Limitation of Intrinsic sulfur vacancy-based memtransistor

Need to explore another parameter of driving memtransistor switching !!!

Novel 2D/oxide memtransistor architecture

Device structure

Device fabrication process flow

Memtransistor with 2D MoS₂/Nb₂O_{5-x} heterostructure

Adv. Funct. Mater. 31, 2104174 (2021)

- HRTEM EDS elemental mapping images verify vertically stacked MoS₂/Nb₂O_{5-x}/Al₂O₃ films
- Each layer was clearly separated, indicating no formation of the unintentional alloy

Gate-tunable resistive switching behavior

Adv. Funct. Mater. 31, 2104174 (2021)

- Introduction of Nb₂O_{5-x} on MoS₂ induced resistive switching
- \bullet Bistable resistance states (HRS & LRS) could be made by polarity of V_{DS}
- Gate-tunable resistive switching was well implemented, showing typical memtransistor behavior

Nb₂O_{5-x} thickness dependent memtransistor switching

Adv. Funct. Mater. 31, 2104174 (2021)

• If considering the tradeoff between the gating efficiency and resistive switching ratio, the memtransistor switching was optimized in the thickness range of approximately 2.1 nm

Schottky barrier modulation coming from oxide layer

Adv. Funct. Mater. 31, 2104174 (2021)

- UPS & PL characterization validate charge transfer between MoS_2 and Nb_2O_{5-x}
- The drain current throughout the MoS₂/Nb₂O_{5-x} film can be more effectively tuned via the modulation of the Schottky barrier height

Drain-terminal tuning of MoS₂/Nb₂O_{5-x} memtransistor

Adv. Funct. Mater. 31, 2104174 (2021)

- The activity of a neuromodulator affects the synaptic connection, which is key for heterosynaptic plasticity preventing the instability of the synaptic weight change
- MoS₂/Nb₂O_{5-x} memtransistor with a wide conductance tunability successfully emulated an artificial neuromodulator

Gate-terminal tuning of MoS₂/Nb₂O_{5-x} memtransistor

- The Nb₂O_{5-x} with a large amount of oxygen vacancies functions as a charge trapping layer between the MoS₂ channel and the Al₂O₃ high-k dielectric
- Essential synaptic parameters of EPSC, IPSC, PPF, LTP, and LTD were also achieved under variable gate pulse condition

- Best pattern recognition accuracy of neuromorphic system with our 2D MoS_2/Nb_2O_{5-x} would be evaluated to be ~ 94.2 %
- Memtransistor devices show an extremely low power consumption of ~6 pJ in single spike

Conclusion

- 1. Novel memtransistor architecture was designed using a 2D/oxide simple structure
- 2. Heterosynaptic plasticity would be useful for the implementation future complex neuromorphic circuit
- 3. The mechanism of the memtransistor switching is strongly related to the Schoottky barrier height modulation induced by Nb_2O_5 layer
- 4. Ultra-scalability and unique memetranssitor switching of the 2D materials accelerate the feasibility of massively-connected neuromorphic circuitry in near future.

RoK-USA research cooperation strategy

- We need to initiate the sustainable graduate-student exchange program funded by both USA and Korea government
- Two-track strategy including both bottom-up small and top-down massive project will be able to meet various kinds of the cooperation-type between USA and Korea researchers if possible.

Acknowledgements

Funding sources

Lab members

Graduate students

Professor

Post-doctor

Undergraduate students

Thank you for your kind attention